There are various ways of controlling the change-over between the input supply and the battery back-up. Section 6 in the datasheet gives one example which is shown below in Figure 1. However this does have the slight disadvantage of having a momentary break in the output supply when the relay switches off (see Figure 2).

If this is not practical and the output needs be supplied continuously, then this can be achieved with the addition of only a three extra components.
Figure 3 shows the addition of a zener, a transistor and a resistor, this increases the relay switch off threshold. In this example ZD1 is an 8V2 zener, which will result in the relay switching off when the supply rail drops to ~9V.

Figures 4 & 5 show the change-over response measured between Output PWR and Output GND.

Figure 3: Improved change-over circuit

Figure 4: Response from +12V Supply to Battery
If using a relay is undesirable, then Figure 6 shows an alternative method using a MOSFET.

Once again ZD1 (8V2) is used to set the supply switch over threshold to ~9V. D3 is only required if the current drawn from the battery is >1.2A. If the current is less than this, then D3 doesn’t need to be fitted and the return path to the battery will be via pins 5 & 6 (GND) of the Ag102.
Figure 7 & 8 show the change-over response of the MOSFET circuit. These results are similar to the relay circuit results shown in Figures 4 & 5.

Figure 7: Response from +12V Supply to Battery

Figure 8: Response from Battery to +12V Supply